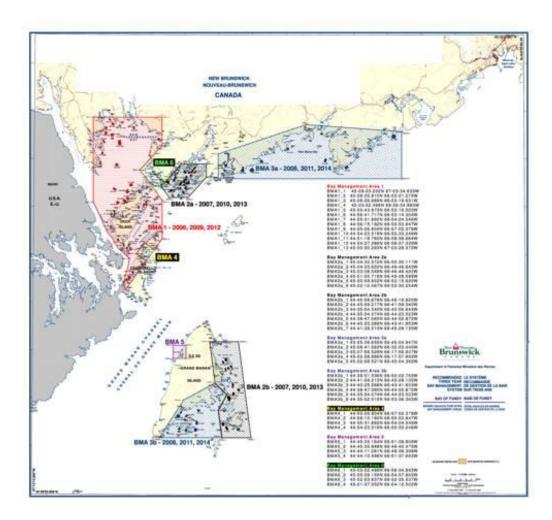

New Brunswick, Canada Sea Lice Integrated Pest Management Multi-National Sea Lice R & D Meeting Bergen, Norway February 10 & 11, 2010

Presentation Overview

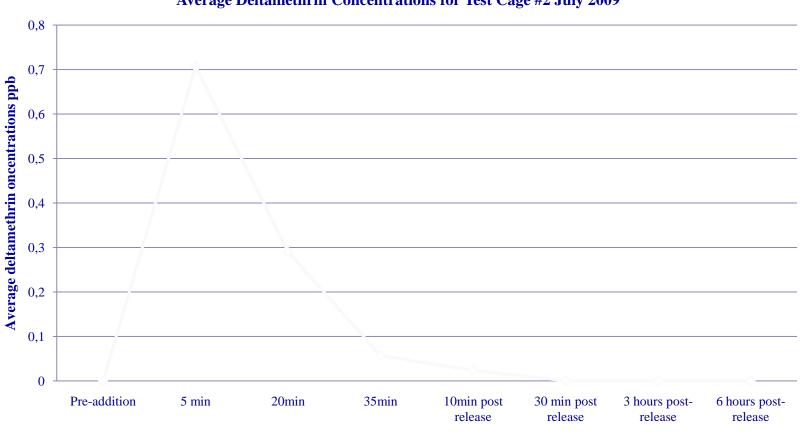

- Background on New Brunswick Situation
- Development of IPMP & Research Direction
- Summary of Research Projects
- Next Steps

Geography/Oceanography Background

- Bay of Fundy is a very productive high energy environment.
- High wild fishery value including lobster, high tidal range & associated currents and high natural organic content in the water column.
- New Brunswick (NB) aquaculture industry produces 35-40,000MT annually of salmon in the Bay of Fundy

Industry Background

 Since 2006 NB industry operates on a 3 Bay Mgmt Area system for stocking to enhance fish health


Sea Lice Background

- SLICE only sea lice treatment during 2000 2009
- Between 2006 and 2009 use of SLICE was reduced by 50% - due to fallowing, reduced stocking, etc.
- Bioassay work in 2008 indicated resistance to SLICE in some farming areas with widespread resistance now apparent in all areas of NB
- AlphaMax June 2009 in a single Bay Management Area
- Salmosan October 2009 all Bay Management Areas
- Calicide October 2009 (drug under Health Canada so available throughout Canada using Emergency Drug Release)

Sea Lice Background

Target dose on bath treatments not being achieved - still had excellent results on all but adult female lice

Average Deltamethrin Concentrations for Test Cage #2 July 2009

Sampling time period

IPMP Development

- IPMP development now national priority in Canada – NB is acting as lead for national template
- NBSGA hosted IPM Meeting December 7th
 - Included pharmaceutical & international salmon farming individuals
- NBSGA hosted research development workshop January 21 & 22
- Synchronized industry wide treatment strategy under development for 2010

Research Strategy

Primary Topic Areas:

- Regulatory Research
- Management Practices
- Environmental Management
- Novel Treatments/Green Technology
- Modelling

Regulatory Research

Regulatory Research supports access to new sea lice treatments and much of this research can be used by the pharmaceutical company in its application for license

Environmental Lab Study – 2010

- Informs questions re: threshold/dose/time/response
- Impact on non-target species
- Monitoring bioassays, clinical efficacy, mode of action
- Prevention rotate chemical families, containment

Environment Field Study – 2010

- Dispersion Study using flourescein (dye) several projects that support access to bath treatments
- Tank Study
 - Provide preliminary results and capability in preparation for more extensive field studies that are being planned for the Spring-Summer 2010
- Field Study
 - *in situ* releases of dye from cages with fish along with current measurements and ongoing development of transport and dispersal models
 - Informs environmental modeling, exposure/fate, treatment efficacy, delivery of treatments, tarps versus skirts, etc.

Management Practices

On-Farm Standard Operating Practices – 2010

SOPs will be informed by dye study in tank and field for:

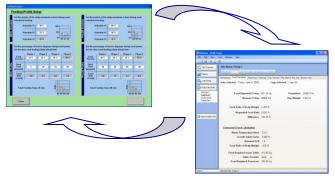
- Delivery of treatment
- Data collection lice counts and life stages; environmental data (i.e. water temps).
- Efficacy of treatment determine trigger
- Synchronization of treatments between farms
- Monitoring will include sensitivity monitoring, treatment efficacy data, bioassay, etc.

Environmental Management

- Provides marine environmental data to inform enhanced farm management practices for sea lice.
- Farm management practices could include improved husbandry practices, net cleaning, feeding times, smolt entry, avoidance strategy, net depth, etc.
- Projects begin in 2010 and will include:

Field Study - factors affecting sea lice populations such as: wild reservoirs, seasonality of lice abundance

Bay Management Areas for IPM – define based on hydrological and seasonal factors to inform treatment synchronization, stocking, etc.


Explore Other Management Options

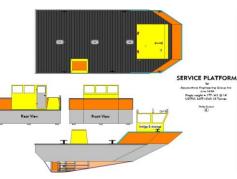
- Explore gel pack to neutralize treatments
- Cage side testing kits to determine organics/appropriate treatment dose
- Containment options (i.e. well boats)

Open Ocean Feeders

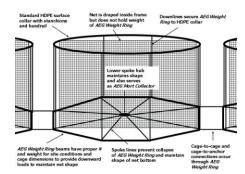
Site Management Software

Fish Sizing Sonar

Towable Feeders



Jeyco Moorings


ECO-Bath System

Service Platforms

Fish Transfer Tank

Containment Systems

ECO-Bath System Design Criteria

- Must minimize fish stress and eliminate mortality during the entire treatment process.
- Must be effective to kill and remove all sea lice from treated fish.
- Must be cost-effective and efficient to ensure adoption and use throughout the industry with a target to treat 4-6 cages per day.
- Must dramatically reduce the total quantity of pesticides required to treat an entire site.
- Must fully contain he treatment bath water including sea lice and pesticides after treated fish stock is removed.

Novel Treatments/Green Tech

The exploration of non-chemical treatment options in the management of sea lice and will include:

- Screen wastewater from harvest boats spring 2010
- Mussel lines to filter planktonic lice spring/ summer 2010
- Hydrogen peroxide to optimize treatments summer/fall 2010
- Lice traps literature review (i.e. pheromones, light, engineering solutions, etc.) – 2010

- Literature review on efficacy of Immunostimulants (i.e. pulse treatments of β glucans and marine bacteria versions of β glucans, up-regulate macrophages to prevent sea lice settlement, etc.)
- Survey of potential indigenous fish 2010
- Disease resistant families ongoing
- Vaccine development at appropriate target stage long term

Other options not ranked: Rubbing post with trap to prevent reattachment); Upwelling; Fresh water dilution; Repellent in diet to prevent copepodid from attachment; Dropping nets to lower depths

Modelling

Environmental Sea Lice Dynamics – begin in 2010; ongoing long-term

- Hydrological model that has been used to define the bay management areas for disease; this model will be used to refine/define sea lice management zones taking into consideration the following factors:
- On farm & Between farm
- Off farm pressures/reservoirs
- Importance of temperature
- Larval dispersal

Decision Support System - 2010 and beyond

Computer based model using on farm data obtained through regular on-farm sea lice monitoring and bioassay data.

Will support the following model work:

- Risk Factor Study Farm management and environment
- Treatment Efficacy Reality of how treatments work
- Larval Dispersal Model will be developed between data from DSS and hydrological model
- Lice population genetics
- Resistance Mechanism will be ongoing at the population level

Immediate Next Steps

- February 19 all research project proposals submitted to NBSGA
- By March 15 meeting with all research funders
- By March 15 endorsement by all companies for implementation of synchronized 2010 sea lice treatment strategy
- April 1 Research collaborative agreements in place and research begins based on govt FY

Ongoing NBSGA Role

- Research Program Coordination
- Communication to industry, funders, other area stakeholders and public
- National collaboration on IPMP and fish health
- Host meeting in November to report on spring/summer research and review/ update IPMP and research strategies

Thank You

Chris Bridger, AEG Inc. Tel: +1-506-529-8467 Email: chris.bridger@aeg-solutions.com Skype: cjbridger1

http://www.aeg-solutions.com You Tube Channel: AEGSolutions